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A theoretical model of a turbulent fountain
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A theoretical model of axisymmetric turbulent fountains in both homogeneous and
stratified fluids is developed. The model quantifies the entrainment of ambient fluid
into the initial fountain upflow, and the entrainment of fluid from both the upflow
and environment into the subsequently formed downflow. Four different variations
of the model are considered, comprising the two most reasonable formulations of
the body forces acting on the ‘double’ structure and two formulations of the rate of
entrainment between the flows. The four model variations are tested by comparing
the predictions from each of them with experimental measurements of fountains in
homogeneous and stratified fluids.

1. Introduction
Turbulent fountains are formed when a continuous jet of dense fluid is injected

rapidly upwards into a lighter environment (Turner 1966). The entrainment of sur-
rounding fluid into this turbulent flow has two effects. The volume flux increases with
height, while the addition of lighter ambient fluid decreases the density of the rising
fluid. The velocity of the heavy upflow decreases until it falls to zero at some initial
height. At this point, the flow reverses direction to fall as an annular plume which
surrounds the central upflow (figure 1). The turbulent interaction between the upflow
and downflow reduces the top of the fountain to a final height, which fluctuates
randomly about a mean value.

Turbulent fountains arise in numerous situations – some examples which have
aroused interest include: the forced heating or cooling of large structures such as
aircraft hangers (Baines, Turner & Campbell 1990), the replenishment of magma
chambers in the Earth’s crust (Turner & Campbell 1986; Campbell & Turner 1989),
the disposal of effluent into the ocean (Koh & Brooks 1975) and the exit snow
from snowploughs (Lindberg & Petersen 1991). In an attempt to understand fountain
behaviour under various environmental conditions, there have been a number of ex-
perimental studies in both homogeneous (Turner 1966; Seban, Behnia & Abreu 1978;
Mizushina et al. 1982) and linearly stratified (Bloomfield & Kerr 1998) environments.
In these studies, experimental measurements have been combined with dimensional
analysis to determine how the fountain heights depend on the initial fluid velocity,
the density difference between the source and ambient fluids, and the ambient density
gradient. However, no such information exists to quantify fountain heights in an
arbitrary density gradient. This is of particular importance in studies of fountains in
a confined environment, where it has been shown that an initially homogeneous or
linearly stratified density profile evolves with time (Baines et al. 1990; Bloomfield &
Kerr 1999). This evolution depends sensitively on the height of the fountain, which
in turn is dependent on the changing ambient density profile. In the ‘fountain filling



198 L. J. Bloomfield and R. C. Kerr

Figure 1. Photograph of a turbulent fountain in a homogeneous fluid.

box’ models developed to date, the rate at which the fountain height increases has
been found by crude interpolations from the known behaviour in homogeneous and
stratified environments (Baines et al. 1990; Bloomfield & Kerr 1999). In this paper,
we aim to develop a theoretical model that can predict the height of a turbulent
fountain in an arbitrary density gradient.

In previous studies (Morton 1959; Bloomfield & Kerr 1998), the entrainment
equations (Morton, Taylor & Turner 1956) have been used successfully to obtain a
theoretical prediction of the initial height the fountain reaches, before the downflow
has formed. However, these entrainment equations can no longer be applied once
the downflow begins to interact with the upflow. To overcome this, Turner (1966)
proposed that it should be possible to set up a detailed theory of the ‘double’ structure
of the fountain in the manner suggested by Morton (1962) for coaxial turbulent jets.
In that study, Morton noted that it is not immediately obvious how the simple ideas
of entrainment across a jet boundary should be extended to the more complicated
double structure of coaxial turbulent jets. Despite this, he proposed one formulation
to quantify the mixing between the core jet and the outer, annular jet.

Morton’s (1962) ideas about the rate of entrainment between two turbulent flows
were subsequently used by McDougall (1981) to develop a theoretical model of an
axisymmetric fountain in a homogeneous fluid. This model was based on a set of
new entrainment equations which quantified the mixing between the upflow and the
downflow, and between the downflow and the environment. In addition to the effects
of mixing between the flows, McDougall (1981) also recognized that the body forces
acting on the fluid in the upflow and downflow are ‘very much an open question’.
In an attempt to address this question, McDougall (1981) considered the two most
reasonable formulations of the body forces acting on the fountain. From the resulting
equations he was able to predict the final fountain height as well as the width, velocity
and buoyancy in the upflow and downflow. In that investigation, only the predictions
of the fountain height were compared with experimental data, as measurements of
the internal fountain structure did not become available until the study by Mizushina
et al. (1982).

In this investigation, we present a new model of a turbulent fountain which builds
on the ideas developed by McDougall (1981), but in which we consider an alternative
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formulation for the entrainment between the upflow and the downflow. In § 2 we
develop a theoretical model for an axisymmetric fountain in a homogeneous envi-
ronment, and compare the numerical predictions with experimental measurements.
In § 3, we extend this model to describe axisymmetric fountains in a stratified fluid,
and compare the results with further experimental measurements. Our conclusions
are summarized in § 4.

2. The model and equations in a homogeneous environment
In this section we focus on developing a simple yet effective model of a turbulent

fountain in a homogeneous fluid. In § 2.1, we review the fountain model presented by
McDougall (1981), and outline the differences in our analysis. We present a general
form of the entrainment equations which includes two formulations of the buoyant
body forces acting on the flow. Then, in § 2.2 we discuss two alternative formulations
to quantify the entrainment between the upflow, downflow and environment. The
numerical method used to solve the entrainment equations is introduced in § 2.3, and
the results of the model are compared with experimental data in § 2.4.

2.1. The model

Immediately after injecting the heavy source fluid, the rising, jet-like flow mixes
directly with the ambient fluid (figure 2a). The changing width, b, fluid velocity, u,
and buoyant acceleration, ∆, in this initial flow can be quantified using the entrainment
equations of Morton et al. (1956):

d

dz
(b2u) = 2αbu,

d

dz
(b2u2) = b2∆,

d

dz
(b2u∆) = 0, (2.1)

where ∆ = (g/ρo)(ρf − ρo), g is the gravitational acceleration, ρo is the density of the
ambient fluid, ρf is the density of the fluid in the fountain, z is the height above the
source and α is the entrainment coefficient, which quantifies the mixing of ambient
fluid into the turbulent flow. These equations rely on the entrainment assumption,
which states that the mean inflow velocity is proportional to the local mean upflow
velocity (Turner 1973, 1986). To simplify the entrainment equations, ‘top hat’ profiles
of velocity and buoyancy are used to represent average quantities across the flow.
From a solution of (2.1), the initial height of the fountain, zi, is determined to be
the point at which the velocity of the upflow becomes equal to zero. Although the
predicted upflow radius goes to infinity at zi, this definition of the top of the fountain
has been shown to agree well with experimental measurements (Bloomfield & Kerr
1998).

The first complication we must consider in modelling a fountain is the reversal
of the fluid after the initial height has been reached. McDougall (1981) introduced
a method of dealing with the fluid reversal in which the numerical solution was
terminated when the Froude number of the flow, defined as Fr = u/(b∆)1/2, falls to

Fr =
√

2. The rising fluid was then assumed to turn around under the action of the
buoyancy, but without any additional mixing. This behaviour was modelled using a
control volume comprising a cylinder of height h with a hemispherical cap of radius r
(figure 3a). However, the ratio of h/r was an additional free parameter in his model.
To avoid the necessity of including more free parameters in our analysis, we continue
to define the top of the fountain as the point where the fluid velocity falls to zero
(figure 3b). The reversal of fluid is modelled by assuming that as the fluid reaches a
terminal height, it forms a ring at the outer edge of the upflow. From this circular
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Figure 2. Schematic representation of a turbulent fountain (a) as the flow reaches an initial height
and (b) after the fluid has reversed direction to form a downflow, and the initial height is reduced to
a final, steady value. The dashed arrows indicate the flow direction, while the solid arrows indicate
the directions of turbulent entrainment between the upflow, downflow and environment.

(a) (b)
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Figure 3. Comparison between the two methods of finding the fountain height as outlined
(a) by McDougall (1981) and (b) in this study.

line source, the downflow forms as a line plume (Baines et al. 1990; Bloomfield &
Kerr 1999) in which the fluxes of volume and buoyancy are distributed around a ring,
giving the fountain its typical structure – a central upflow surrounded by an annular
downflow (figure 2b).

Once the downflow has formed, our model must include the mixing that is indicated
in figure 2(b) – fluid from the downflow is entrained into the upflow, while fluid is
entrained into the downflow from both the upflow and the environment. We define
separate properties for the upflow and the downflow, indicated by the subscripts u
and d, respectively. The fluxes of volume, momentum and buoyancy are therefore

Qu = πb2
uuu, Qd = π(b2

d − b2
u)ud,

Mu = πb2
uu

2
u, Md = π(b2

d − b2
u)u

2
d,

Fu = πb2
uuu∆u, Fd = π(b2

d − b2
u)ud∆d.

 (2.2)
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Figure 4. Model of a turbulent fountain, indicating the various quantities and properties that are
included in the equations.

The terms for the buoyant acceleration are defined to be ∆u = (g/ρo)(ρo − ρu) and
∆d = (g/ρo)(ρd − ρo), with ρu and ρd the fluid densities in the upflow and downflow,
respectively. The different signs of ∆u and ∆d here indicate whether the buoyant
acceleration is opposing the motion (∆u < 0), or whether it is in the direction of
motion (∆d > 0). To simplify the theoretical model, upflow quantities are measured at
distances from the source, z, and downflow variables are measured at distances from
the top of the fountain, x. The relevant fountain properties are illustrated in figure 4.

At this stage, we make no assumptions about the rate of entrainment into the
upflow or downflow of the fountain, choosing instead to simply define ωα as the
velocity of entrainment into the upflow, ωβ as the entrainment velocity of fluid
entering the downflow from the upflow, and ωγ as the velocity of entrainment for
ambient fluid mixed into the downflow (see figure 4). The choice of the relevant
velocity scales on which to base ωα, ωβ and ωγ , and the consequences of this decision,
are discussed in § 2.2.

In his theoretical model of a turbulent fountain, McDougall (1981) derived two sets
of entrainment equations, based on two different assumptions about how the body
forces affect the upflow and downflow. In both formulations, the equations for the
conservation of volume and buoyancy fluxes were given by

d

dz
(b2
uuu) = 2buωα − 2buωβ, (2.3a)

d

dx
([b2

d − b2
u]ud) = 2bdωγ − 2buωα + 2buωβ, (2.3b)

for the upflow and downflow volume fluxes, respectively, and

d

dz
(b2
uuu∆u) = −2buωα∆d − 2buωβ∆u, (2.4a)

d

dx
([b2

d − b2
u]ud∆d) = −2buωα∆d − 2buωβ∆u, (2.4b)

for the upflow and downflow buoyancy fluxes.
In the first of his formulations for the buoyant body forces, McDougall (1981)

assumed that the pressure gradient everywhere is hydrostatic and that the surfaces of
constant pressure remain horizontal throughout the environment, the upflow and the
downflow. In that case, the buoyant body forces accelerating the upflow depend only
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on the density difference between the fluid in the upflow and that of the environment –
that is, on ∆u. This assumption leads to the following equations for the conservation
of momentum flux in the upflow and the downflow:

d

dz
(b2
uu

2
u) = b2

u∆u − 2buωαud − 2buωβuu, (2.5)

d

dx
([b2

d − b2
u]u

2
d) = [b2

d − b2
u]∆d − 2buωαud − 2buωβuu. (2.6)

In the second of his body force formulations, McDougall (1981) assumed that the
body force acting on the upflow is the local density difference between the upflow
and downflow, ∆u + ∆d, so that the equation for the conservation of momentum flux
in the upflow is

d

dz
(b2
uu

2
u) = b2

u

(
∆u + ∆d − uddud

dx

)
− 2buωαud − 2buωβuu, (2.7)

where the term ud(dud/dx) is due to the acceleration of the frame of reference fixed to
the downflow. The assumption was then made that the total momentum flux across
the fountain should also be conserved, so that

d

dz
(b2
uu

2
u)− d

dx
([b2

d − b2
u]u

2
d) = b2

u∆u − [b2
d − b2

u]∆d. (2.8)

Equations (2.8) and (2.7) then give

d

dx
([b2

d − b2
u]u

2
d) = [b2

d − b2
u]∆d + b2

u

(
∆d − uddud

dx

)
− 2buωαud − 2buωβuu. (2.9)

McDougall (1981) numerically integrated his entrainment equations to obtain pre-
dictions for the height of the fountain, as well as the radius, fluid velocity and density
of the upflow and downflow, and compared the results with experimental measure-
ments. Due to the number of arbitrary approximations in his model, McDougall
(1981) stated that he could not conclude ‘with any degree of confidence’ which of
the two body force formulations corresponded closest with experiment. However, he
did note that when ‘best guess’ values were used for his free parameters, the second
formulation gave a more accurate prediction of the final fountain height. In this
study, we will continue to consider both formulations for the body forces, which we
call BFI and BFII.

The set of entrainment equations (i.e. (2.3) and (2.4), together with either (2.5) and
(2.6), or (2.7) and (2.9)) are simplified by writing them in terms of the non-dimensional
variables given by

z̃ = M
−3/4
o F

1/2
o z, b̃ = M

−3/4
o F

1/2
o b,

ũ = M
1/4
o F

−1/2
o u, ω̃ = M

1/4
o F

−1/2
o ω,

∆̃ = M
5/4
o F

−3/2
o ∆.

 (2.10)

After some rearranging, and introducing the dimensionless fluxes of volume, Q̃ =
b̃2ũ, momentum, M̃ = b̃2ũ2, and buoyancy, F̃ = b̃2ũ∆̃, the final equations are

dQ̃u
dz̃

= 2
Q̃u

M̃
1/2
u

(ω̃α − ω̃β), (2.11a)
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dQ̃d
dx̃

= 2
Q̃u

M̃
1/2
u

((
1 +

1

A

)1/2

ω̃γ + ω̃β − ω̃α

)
, (2.11b)

dF̃u
dz̃

= −2
Q̃u

M̃
1/2
u

(
F̃d

Q̃d
ω̃α +

F̃u

Q̃u
ω̃β

)
, (2.11c)

dF̃d
dx̃

= −2
Q̃u

M̃
1/2
u

(
F̃d

Q̃d
ω̃α +

F̃u

Q̃u
ω̃β

)
, (2.11d)

with

dM̃2
u

dz̃
= 2Q̃uF̃u − 4M̃3/2

u

(
Bω̃α + ω̃β

)
, (2.11e)

dM̃2
d

dx̃
= 2Q̃dF̃d − 4M̃1/2

u M̃d

(
Bω̃α + ω̃β

)
, (2.11f)

for the first body force formulation, and

dM̃2
u

dz̃
= 2Q̃uF̃u + 4M̃3/2

u

(
B

(
1 +

1

A

)1/2

ω̃γ +
AB − 1

1 + A
ω̃β − Bω̃α

)
, (2.11g)

dM̃2
d

dx̃
= 2Q̃dF̃d + 4M̃1/2

u M̃d

(
B

(
1 +

1

A

)−1/2

ω̃γ +
AB − 1

1 + A
ω̃β − Bω̃α

)
, (2.11h)

for the second body force formulation. In these equations,

A =
Q̃2
uM̃d

Q̃2
dM̃u

=
b̃2
u

b̃2
d − b̃2

u

and B =
Q̃uM̃d

Q̃dM̃u

=
ũd

ũu
. (2.12)

2.2. Entrainment

The entrainment assumption in its general form states that the inflow velocity of
entrained fluid at any height scales with some characteristic velocity in the flow at
that height (Morton et al. 1956). In flows with a ‘double’ structure, such as coaxial
jets (Morton 1962), bubble plumes (McDougall 1978; Asaeda & Imberger 1993) or
fountains (McDougall 1981), it is not immediately obvious on which velocity scales the
entrainment velocities should be based. We present here two alternative formulations
for the entrainment.

2.2.1. Entrainment formulation I (EI)

The first formulation we consider is that proposed by Morton (1962) for coaxial jets,
and subsequently used by McDougall (1981) in his theoretical modelling of a turbulent
fountain. Morton (1962) argued that the supply of energy to the turbulence in the inner
flow arose due to the difference in mean velocities between the inner and outer flows.
Consequently, it was this velocity difference on which the rate of entrainment should be
based. Similarly, he proposed that the turbulence in the outer flow arose as a result of
the shear between this flow and the stationary environment, leading to the prediction
that the rate of entrainment into the outer flow should scale with the mean velocity
of that flow. In a turbulent fountain, these arguments lead to the prediction that

ωα = α(uu + ud), ωβ = βud, ωγ = γud, (2.13)

with α, β and γ the relevant entrainment coefficients.
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In this formulation, the shear between the two flows is assumed to affect only the
inner flow. However, it is not obvious to us why the turbulence generated by the shear
should be transferred in one direction only (i.e. inwards). We therefore introduce a
second entrainment formulation in which the shear between the flows affects the
turbulence in both inner and outer flows.

2.2.2. Entrainment formulation II (EII)

In this formulation, we argue that the total shear, uu +ud, should be partitioned (cf.
Morton 1962) so that only the component containing upward velocities, uu/(uu + ud),
affects the turbulence in the upflow, and the remaining component, ud/(uu + ud), feeds
the turbulence in the downflow. The entrainment velocities therefore depend on the
relevant fraction of the total shear, and are given by

ωα = αuu, ωβ = βud, ωγ = γud. (2.14)

Essentially, we have again assumed that the entrainment velocity scales with a velocity
difference, although this time the shear is taken to be the difference between the mean
fluid velocity in the flow and the mean velocity on the ‘edge’ of the flow under
consideration. This approach is consistent with the commonly stated entrainment
assumption in simple flows where the velocity on the edge of the flow is equal to that
in the environment. In a fountain, however, the obvious position of the boundary
between the upflow and downflow is the point at which the mean velocity is equal to
zero (Mizushina et al. 1982, figure 7).

2.3. The numerical method

The starting conditions for the integration of the upflow equations are defined at a
height zo above the point source. This is necessary to avoid the infinite fluid velocity,
uo = Mo/Qo, that would arise from a theoretical point source (Qo = 0). To determine
the values of Q̃, M̃ and F̃ at a height of z̃o = 0.01, we note that near the source, the
upflow is unaffected by either its negative buoyancy or the presence of the downflow
(Bloomfield & Kerr 1999). From a solution of (2.1) for a jet (Q̃o = 0, M̃o = 1, F̃o = 0),
we find that Q̃(z̃o) = 2αz̃o and M̃(z̃o) = 1. In a fountain, we then assume that F̃ is
unchanged from its value at the source, so that F̃(z̃o) = −1.

Initially there is no downflow (Q̃d = M̃d = F̃d = 0) so that (2.11a) and (2.11c)
together with either (2.11e) or (2.11g) reduce to the standard entrainment equations
(2.1). These equations for the upflow are solved numerically using a routine based on
a fourth-order Runge–Kutta scheme. The point at which the upflow momentum flux
becomes equal to zero gives a value of the initial fountain height, z̃i (Morton 1959;
Bloomfield & Kerr 1998). The values of the upflow volume flux, Q̃T , and buoyancy
flux, F̃T , at this initial height are the starting conditions for Q̃d and F̃d at x̃ = 0
(x̃ is measured from the top of the fountain). The conservation equations for the
downflow (2.11b, 2.11d and either 2.11f or 2.11h) are then integrated from the top
of the fountain to the starting point at z̃o, using the previously determined values of
Q̃u, M̃u and F̃u at each height. These newly determined values for the fluxes in the
downflow are then used in the next integration of the upflow equations. The point
at which M̃u = 0 in this iteration gives the first estimate of the reduced final height,
z̃f . This procedure is continued until the estimate of z̃f from subsequent iterations
converges to a fixed value, which we take as our evaluation of the final fountain
height.
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z̃i z̃f Frmax Reference

2.65 ± 0.36 1.85 ± 0.25 250 Turner (1966); Baines et al. (1990)
1.76 ± 0.15 100 Mizushina et al. (1982)

2.32 ± 0.08 1.70 ± 0.17 65 Appendix

Table 1. Dimensionless values of the initial and final fountain heights from several experimental
investigations.

2.4. Results and comparison with experiments

The method outlined above was used to determine the initial fountain height, z̃i, as
well as four values of the dimensionless fountain height, z̃f , for the combinations
of two body force formulations (BFI and BFII) and two entrainment formulations
(EI and EII). The values obtained for z̃i and z̃f correspond to the experimentally
determined constants in the expressions relating the fountain heights to the intrinsic

length scale of M
3/4
o F

−1/2
o (Turner 1966).

A number of investigators have measured z̃i and z̃f under a variety of conditions
and for a range of Froude numbers, Fr, where Fr = uo/(ro∆o)

1/2 (table 1). The most
extensive measurements of the fountain height (Fr < 250) were presented by Baines et
al. (1990), who obtained a value of z̃f = 1.85±0.25 (where we have estimated the error
from their experimental data). This data set included some experiments at relatively
low Froude numbers (Fr < 20) made previously by Turner (1966), in which the ratio
of the initial to final fountain height was found to be z̃i/z̃f = 1.43. Combining these
two results gives an estimate of z̃i = 2.65± 0.36 for the initial fountain height. Some
measurements of the final fountain height for Froude numbers up to Fr = 100 were
made by Mizushina et al. (1982), who obtained a value of z̃f = 1.76 ± 0.15 (where
we have once again estimated the error from their data set). We also note that some
other investigations (e.g. McDougall 1981; Lindberg 1994) give values of z̃f , but these
studies do not carefully document the source conditions (i.e the position of the virtual
source and the effective source radius). The variation in the reported values of z̃f ,
and the limited measurements of z̃i motivated us to perform our own experiments
(described in detail in the Appendix), from which we found that z̃i = 2.32± 0.08 and
z̃f = 1.70 ± 0.17. Both our measurements and those of Mizushina et al. (1982) are
somewhat lower than the results of Baines et al. (1990), although they do lie within
the range of experimental scatter.

In the first iteration of the upflow equations, α is the only free parameter. It was
found by Bloomfield & Kerr (1998) that a value of α = 0.085±0.01 (which lies between
the jet value of α = 0.076± 0.004 and the plume value of α = 0.117± 0.006 (Fischer
et al. 1979; Rodi 1982) gave a good prediction of the initial height of a fountain in
a stratified fluid. In a homogeneous fluid, the value of α = 0.085 ± 0.01 results in
a numerical estimate of z̃i = 2.49 ± 0.15, which lies between the two experimentally
determined values (see table 1) of z̃i = 2.65± 0.38 (Turner 1966) and z̃i = 2.32± 0.08
(Appendix).

By modelling the downflow as a line plume which encircles the upflow, we fix
the entrainment coefficients β and γ at the value found for a line plume with top-
hat profiles of velocity and buoyancy: β = γ = 0.147 (List 1982). The uncertainty
in the entrainment coefficient for a line plume can be calculated from the results
of Kotsovinos & List (1977) to be β = γ = 0.147 ± 0.014. These values of β and γ
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Entrainment I (EI) Entrainment II (EII)

Body force I (BFI) z̃f = 1.07± 0.09 z̃f = 1.25± 0.09
Body force II (BFII) z̃f = 1.20± 0.10 z̃f = 1.49± 0.11

Table 2. Numerical results for the fountain for the two body force formulations, and two
entrainment formulations.

contrast those used by McDougall (1981), who incorrectly used Gaussian entrainment
coefficients in entrainment equations which were developed assuming top-hat profiles.

The predictions of the final fountain height obtained from the combination of
two entrainment formulations and two buoyant body force formulations (referred
to hereinafter as BFIEI, BFIEII, BFIIEI and BFIIEII) are summarized in table 2,
showing the variation in z̃f due to the uncertainty in the entrainment coefficients α, β
and γ. All the numerical results underestimate the various experimental measurements,
with the combination BFIIEII (z̃f = 1.49 ± 0.11) giving the result closest to the
experimentally determined value.

To determine the sensitivity of the results to variations in β and γ, we first decreased
β from the value for a plume to that for a jet (β = 0.076), while keeping γ fixed. This
resulted in only a 0.5% decrease in the predicted fountain height. Decreasing β has
two effects: first, less of the dense rising fluid is mixed into the downflow, so that
the downflow remains lighter and therefore experiences a smaller downward acting
buoyancy force; second, however, the decrease in the interaction with the upflow
allows greater acceleration of the falling fluid. As varying β has a negligible effect on
the predicted fountain height, it appears that these two effects essentially cancel each
other out.

In contrast, when γ was also reduced to the jet value of γ = 0.076, the numerical
estimate for the fountain height dropped by approximately 20%. In this case, mixing
with the stationary environment does not affect the momentum of the downflow, so
the only effect of decreasing the entrainment from the environment is to give a denser
and therefore more accelerated downflow.

In addition to the comparisons for the final fountain height, the numerical pre-
dictions of the upflow and downflow properties can also be compared with the
experimental measurements of Mizushina et al. (1982). In figure 5(a), the numerical
results from all four formulations are compared with the experimental measurements
of the upflow and downflow radius (Mizushina et al. 1982). Despite the numerical
results for the upflow and downflow radius becoming unrealistic near the top of the
fountain, the results from all four formulations lie within the range of experimental
scatter. The predictions for the outer radius are much better than those obtained by
McDougall (1981), who stated that his numerical results for the fountain radius were
approximately half of the experimentally measured radius.

Figure 5(b) shows that for all four formulations, our numerical results for the
upflow velocity are in excellent agreement with the centreline velocities measured by
Mizushina et al. (1982). Near the top of the fountain, the numerical and experimental

Figure 5. Comparison of the numerical results with experimental data (symbols) of Mizushina et al.
(1982) for (a) the upflow and downflow radius, (b) the upflow velocity and (c) the upflow buoyancy
also including some experimental results of Seban et al. (1978). Shown are the numerical results for
the four different formulations: BFIEI (· · · ·), BFIIEI (– · – ·), BFIEII (- - - -) and BFIIEII (——).
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results diverge, as the different calculations of the fountain height become apparent.
The numerical predictions of the upflow buoyancy shown in figure 5(c) slightly
overestimate the centreline measurements, with a significant deviation near the top of
the fountain. The rapid decrease in buoyancy to the ambient value near the top of
the fountain in the experimental data is due to the fluctuations in the fountain height,
where measurements of the upflow buoyancy are a time average of the buoyancy of
the fountain fluid and that of the ambient fluid.

The calculated velocities and buoyancies in the fountain downflow are plotted in
figures 6(a) and 6(b), respectively. Figure 6(a) shows that all the formulations predict
a rapid increase in the downflow velocity from zero at the top of the fountain to a
maximum near z̃ = 0.6z̃f , followed by a decrease of 10–15% down to z̃ = 0. The
only experimental measurements of the downflow velocity with which to compare
these theoretical results were made by Mizushina et al. (1982, figure 7), who measured
the ratio ud/uu at two different heights. These measurements, when combined with
their data for the upflow velocity (see figure 5b), indicate that the downflow velocity
decreased by about 30±15% from z̃ = 0.54z̃f to z̃ = 0.24z̃f , where we have estimated
the error from the scatter in the experimental data. We note that this measured
decrease is somewhat greater than our calculations of a 5–10% decrease in velocity
between these heights.

Figure 6(b) shows that the calculated buoyancy decreases by 50–60% between the
top of the fountain and the source, and the magnitude of the buoyancy depends on the
formulation used. These calculations can also be compared with the experimental data
of Mizushina et al. (1982). From their measurements of the ratio ∆d/∆u (Mizushina et
al. 1982, figure 8), together with their data for the upflow buoyancy (see figure 5c), we
estimate that the downflow buoyancy decreased by about 25± 20% from z̃ = 0.54z̃f
to z̃ = 0.24z̃f . We note that this decrease is comparable to our calculated buoyancy
decrease of approximately 20% between these heights.

In summary, the calculated fountain properties agree well with the available exper-
imental measurements over most of the fountain height. The largest deviations arise
near the top of the fountain, which probably reflects the fact that elements of fluid
come to rest at different heights, in contrast to our simple assumption that all the
fluid comes to rest at the same height (cf. figure 4).

3. Application of the model to a stratified environment
In this section, we extend our theoretical model to describe a turbulent fountain in

a linearly stratified environment. We outline the changes to the model in § 3.1, before
comparing the model results with experimental measurements in § 3.2. In § 3.2.1, the
equations are solved in the limiting case of a zero buoyancy flux at the source, before
we proceed in § 3.2.2 to solve the equations for any source conditions.

3.1. The revised model and equations

In a previous experimental study of fountains in a linearly stratified fluid, Bloomfield &
Kerr (1998) measured the fountain properties in terms of a dimensionless parameter
σ = M2

oN
2/F2

o , where N2 = (−g/ρo)dρ/dz is a measure of the strength of the
stratification, g is the gravitational acceleration, ρo is the ambient density at the base
of the tank and ρ(z) is the ambient density at a height z above the base of the tank.
In terms of this parameter σ, the fountain behaviour varies from that observed in
a homogeneous fluid (σ = 0) to the case where the density of the source fluid is
equal to the ambient at the base of the stratification (Fo = 0, σ = ∞). In contrast to
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Figure 6. Numerical calculations of the (a) velocity and (b) buoyancy in the downflow for each of
the four formulations (line styles as for figure 5).

the σ = 0 behaviour described in § 2.1, when σ = ∞, the density of the downflow
becomes equal to the ambient density at some height above the source. At this
height of neutral buoyancy, the downflow still has some momentum, so that the flow
overshoots slightly before intruding as a thin spreading layer (figure 7). In a stratified
fluid, therefore, there are two distinct regimes of behaviour which are represented by
basal and intermediate spreading. The transition between these regimes occurs at a
critical value of σc = 5.0, so that for σ < σc, basal spreading occurs, while for σ > σc,
intermediate intrusion takes place (Bloomfield & Kerr 1998).

Despite the differences in the qualitative behaviour when intermediate spreading
occurs, the basic fountain model remains unchanged from that presented in § 2.1:
a central jet-like upflow is surrounded by an annular plume-like downflow. Conse-
quently, the equations for the conservation of volume flux (2.3a, b) and momentum
flux ((2.5) and (2.6) or (2.7) and (2.9)) are similarly unchanged. In an ambient density
gradient, however, the conservation of buoyancy flux in the upflow and downflow,
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Figure 7. Photograph of an axisymmetric fountain in a linearly stratified environment, when the
flow has a zero buoyancy flux at the source (σ = ∞).

respectively, becomes

d

dz
(b2
uuu∆u) = −N2b2

uuu − 2buωα∆d − 2buωβ∆u, (3.1a)

d

dx
([b2

d − b2
u]ud∆d) = −N2[b2

d − b2
u]ud − 2buωα∆d − 2buωβ∆u, (3.1b)

where the buoyancies ∆u and ∆d are now defined by ∆u = (g/ρo)(ρ(z) − ρu) and
∆d = (g/ρo)(ρd − ρ(z)), with ρ(z) the ambient density at a height z above the source,
and ρo = ρ(0).

The model now includes the possibility of intermediate spreading. Previously,
Bloomfield & Kerr (1998) obtained a numerical estimate of the spreading height by
calculating the fluid density at the initial fountain height, and finding where fluid
of this density would intrude into the environment. We extend that method here to
obtain a better approximation, although there are three outcomes of the model. In a
strong gradient (σ → ∞), the solution for the downflow buoyancy flux falls to zero
at an intermediate height, and the momentum flux is reduced to zero closer to the
source. An approximation for the spreading height is obtained by calculating the
fluid density at the point where the downflow momentum flux becomes equal to zero,
and finding where the fluid of this density would intrude in the environment (figure
8a). As the conditions approach the transition between the two regimes of behaviour
(σ ≈ σc), the buoyancy flux falls to zero above the source but the downflow still has
momentum at the base (figure 8b). In this case, the density of the downflow as it
reaches the base is calculated, and this density used to determine the spreading height.
In the third case (σ → 0), neither the buoyancy or momentum fluxes in the downflow
reach zero, and basal spreading occurs (figure 8c).

In the experimental study of fountains in a stratified fluid (Bloomfield & Kerr
1998), the source characteristics were analysed in detail, and it was found that the
flow was turbulent from the source and the virtual point source was located 1 cm
below the base of the tank. The numerical integration of the entrainment equations is
therefore started at the level of the actual source (zo = 0.01 m) with an effective radius
of ro = 4.16×10−3 m and a non-zero volume flux. As we are no longer assuming flow
from a point source, the entrainment equations must be solved in their dimensional
form ((2.3) and (3.1) together with either (2.5) and (2.6), or (2.7) and (2.9)).
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Figure 8. To determine the spreading height in a stratified fluid either (a) the density of the
downflow is found at the point where the momentum flux falls to zero, and the level where this fluid
would intrude is calculated, or (b) the density of the now buoyant falling fluid when it reaches the
base is determined, and the level where this fluid would intrude is calculated, or (c) the downflow
reaches the base still heavier than its environment and basal spreading occurs.

3.2. Results

In § 2.4, we discussed the numerical results for the special case of a homogeneous
environment (σ = 0). Before proceeding to apply the model to flows with any value
of σ, we first consider the other limiting case of σ →∞, which has been studied in
detail experimentally.

3.2.1. Theoretical results for σ = ∞
It has been shown that when σ →∞, the fountain heights are given by z =

CM
1/4
o N−1/2 with experimentally determined constants Ci, Cf and Cs for the initial,

final and spreading heights, respectively (Bloomfield & Kerr 1998). To obtain a
numerical prediction of these constants, the slope of a plot of the calculated fountain

heights against M
1/4
o N−1/2 was obtained. The value of N was fixed at N = 1 s−1, while

Mo was varied between 5 × 10−8 and 1 × 10−4 m4 s−2. The region corresponding to
fountains less than 2 cm in height was excluded, as the effect of a finite source is
considerable at small heights. Using an entrainment coefficient of α = 0.085 ± 0.010
(Bloomfield & Kerr 1998), the numerical prediction of Ci = 3.29 ± 0.16 agrees well
with the experimentally determined value of Ci = 3.25± 0.17.

The final and spreading heights were calculated for the two body force formulations
and the two entrainment formulations, using α = 0.085 ± 0.010 and β = γ = 0.147 ±
0.014, with the results shown in table 3. For the homogeneous results, BFIIEII (using
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Entrainment I Entrainment II

Body force I
Cf = 2.80± 0.15

Cs = 1.43± 0.08

Cf = 2.98± 0.12

Cs = 1.50± 0.06

Body force II
Cf = 2.94± 0.15

Cs = 1.57± 0.08

Cf = 3.23± 0.16

Cs = 1.60± 0.10

Table 3. Numerical predictions for the constants in the expression z = C ×M1/4
o N−1/2 for the final

(Cf) and spreading (Cs) heights.

α = 0.076) underestimated the final height. Here, this combination predicts a final
height of Cf = 3.23 ± 0.16 and a spreading height of Cs = 1.60 ± 0.10, both of which
slightly overestimate the experimentally determined values of Cf = 3.00 ± 0.23 and
Cs = 1.53 ± 0.10, respectively (Bloomfield & Kerr 1998). The closest agreement with
the experimental results is obtained using BFIEII (Cf = 2.98±0.12, Cs = 1.53±0.06).
However, as all of the formulations predict final and spreading heights which lie
within the error bars of the experimentally determined results, these results do not
clearly support any particular one of the formulations. This result is not unexpected,
as Bloomfield & Kerr (1998) showed that the distance over which the upflow and
downflow interact clearly affects the amount by which the final fountain height is
reduced from the initial value (Bloomfield & Kerr 1998, figure 6c). In a homogeneous
fluid, z̃i/z̃f = 1.43 (Turner 1966), but this ratio falls to z̃i/z̃f = 1.05 as the spreading
height reaches a maximum. With such a small difference between z̃i and z̃f , the scope
for any differences between the four formulations is similarly reduced.

3.2.2. Theoretical results for 0 < σ < ∞
Of the four possible model variations, those including the second entrainment

formulation gave the best results at σ = 0, while little difference was observed
between the formulations at σ = ∞. We therefore now use the second entrainment
formulation (variations BFIEII and BFIIEII) to model the fountain for the full range
of σ.

Bloomfield & Kerr (1998) used a dimensional argument to show that a general

expression for the fountain heights in a stratified fluid is z = f(σ)M
3/4
o F

−1/2
o , where

f(σ) is different for the initial, final and spreading heights. Experimental measure-
ments of the fountain heights, non-dimensionalized by the homogeneous length scale,

M
3/4
o F

−1/2
o , were plotted against σ to show f(σ) for the three heights. Numerical

predictions for f(σ) for the initial, final and spreading heights were obtained for
σ = 10−1–104 by fixing Fo = 5 × 10−5 m4 s−3 and varying Mo from 7 × 10−5 to
3 × 10−3 m4 s−2 and N between 0.2 and 1.6 s−1. Tests of the program showed that
for any value of σ, f(σ) was independent of the actual values of Mo, Fo and N.
The numerical results using BFIEII and BFIIEII with α = 0.085 and β = γ = 0.147
are shown in comparison with the experimental results in figure 9. Although the
results using BFIIEII (figure 8b) overestimate the fountain heights as σ → ∞, this
formulation gives the better prediction of the experimental results over the full range
of σ. These graphs also show the range of σ corresponding to the three variations in
the modelling of the downflow that were illustrated in figure 8.

From the numerical results, it is also possible to predict the critical value of
σc which quantifies the transition between basal and intermediate spreading. Using
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Figure 9. Comparison between the experimental measurements of f(σ) for the initial, final and
spreading heights with the numerical predictions obtained using α = 0.085, β = γ = 0.147 in the
formulations: (a) BFIEII and (b) BFIIEII. Also shown on the figures are the three regimes of
behaviour corresponding to the different methods of determining the spreading height.

BFIEII gives σc = 8.5, while the prediction of σc = 5.2 obtained using BFIIEII is in
much better agreement with the experimentally determined value of σc = 5.0± 0.1.

4. Conclusions
We have developed a theoretical model of an axisymmetric turbulent fountain, in

which a set of entrainment equations is used to quantify the turbulent mixing between
the upflow, the downflow and the environment. The derivation of the entrainment
equations relied on the replacement of unknown profiles of velocity and buoyancy
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with average ‘top-hat’ profiles. In our modelling, we have focused on the effects
that different formulations of the body forces and entrainment velocities have on
the fountain properties. In the two body force formulations considered, the buoyant
acceleration of the upflow was measured relative to either the stationary environment
(BFI) or to the accelerating downflow (BFII). In the two entrainment formulations,
the entrainment into the upflow was quantified using either the velocity difference
between the upflow and downflow (EI) or the velocity of the upflow (EII).

All four variations of the entrainment equations were integrated numerically to
calculate the initial, final and spreading heights of the fountain, as well as the radius,
velocity and buoyancy of the upflow and downflow. In a homogeneous fluid, the
calculated final fountain heights were all lower than the experimental measurements,
with the differences between theory and experiment ranging from about 40% (using
BFI and EI) to about 15% (using BFII and EII). This difference between the model
and experimental measurements probably reflects the fact that both the assumed
top-hat profiles and the model pictured in figure 4 are only rough descriptions of the
actual behaviour near the top of the fountain.

The theoretical model also gave predictions of the velocity and buoyancy in the
upflow, as well as the radius of the upflow and downflow. These calculated properties
were compared with all available experimental data, and were found to be in good
agreement.

In a stratified fluid, the equations were integrated to give the initial, final and
spreading heights as a function of the dimensionless parameter, σ, as it varies from
σ = 0 (homogeneous fluid) to σ → ∞ (stratified fluid with zero buoyancy flux at
the source). As the spreading height rises to an intermediate level (at larger values
of σ), the interaction between the upflow and downflow decreases, and consequently
there is little difference between the four formulations at large values of σ. The best
agreement over the full range of σ was therefore obtained using the combination of
body force and entrainment formulations that best predicted the fountain heights in
a homogeneous fluid (BFII and EII).

Our original aim was to develop a theoretical model which could be used to
calculate the fountain properties in an arbitrary density gradient. The model we
have presented is accurate to about 15% in a homogeneous fluid, with the accuracy
increasing to about 5% in a linearly stratified fluid. In an arbitrary density gradient,
we therefore expect the model presented to give reasonably accurate predictions of
the fountain properties, especially in cases where intermediate intrusion occurs. One
important situation where the theory is needed is in a confined stratified environment
(Bloomfield & Kerr 1999), where the ambient density gradient continuously evolves
with time.

We thank Tony Beasley, Derek Corrigan and Ross Wylde-Browne for their tech-
nical assistance with the experiments. We also thank Stewart Turner for his helpful
comments and for providing us with the photograph shown in figure 1. One of the ex-
periments was performed with the aid of Melanie Cooper. The financial support of an
Australian Research Council Fellowship (for R. K.) and that of a Jaeger Scholarship
and Australian Postgraduate Award (for L. B.) are gratefully acknowledged.

Appendix. Experiments
To measure the fountain heights, we used the same experimental apparatus and

setup that was previously employed by Bloomfield & Kerr (1998) to investigate
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Figure 10. Experimental measurements of the initial (�) and final (N) fountain heights in a

homogeneous fluid. The heights are plotted against the length scale, M
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−1/2
o giving values of

z̃i = 2.32± 0.08 and z̃f = 1.70± 0.11.

turbulent fountains in a stratified fluid. A tank 70 cm deep and 40 cm × 40 cm in
cross-section was filled with tap water. Source fluid of varying density, ρi, was placed
in a 20 l bucket which was raised 1.5 m higher than the main tank. The flow rate
resulting from this gravitational head was adjusted with a valve and measured with a
flow meter to an accuracy of 1–4%. The source fluid was injected upwards from the
base of the tank through a tube with an 8.8 mm inner diameter. Two sets of crosshairs
were aligned and positioned 3 mm and 44 mm from the nozzle outlet to ensure that
the flow was turbulent from the source. To quantify the effect of these crosshairs,
Bloomfield & Kerr (1998) used measurements of the position of the descending front
formed by a jet impinging on the free surface to determine an effective source radius,
re. For fully laminar flow, re =

√
3 ro/2, while for turbulent flow, re = ro. Careful

measurements by Bloomfield & Kerr (1998) indicated that the effective source radius
was re = 4.16± 0.23 mm, and hence that the flow was almost fully turbulent from the
source. In addition, the virtual source was found to lie 1.0± 0.2 cm below the base of
the tank. One further experiment was performed with a 3.2 mm diameter nozzle for
which it was found that re = 1.46 ± 0.08 mm with the virtual source coinciding with
the nozzle outlet.

In total, we performed nine experiments for Froude numbers in the range 10–70.
The measured initial and final heights of the fountain above the virtual source are

plotted in figure 10 against the length scale, M
3/4
o F

−1/2
o . The average value of z̃i and

z̃f was calculated to give values, within two standard deviations, of z̃i = 2.32 ± 0.08
and z̃f = 1.70± 0.17.
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